InCLow
InCLow
Home
People
Reading Group
Projects
Publications
Paper-Conference
Simulating the Emergence of Differential Case Marking with Communicating Neural-Network Agents
Yuchen Lian
,
Arianna Bisazza
,
Tessa Verhoef
Cite
DOI
URL
Pointwise Mutual Information as a Performance Gauge for Retrieval-Augmented Generation
Recent work suggests that large language models enhanced with retrieval-augmented generation are easily influenced by the order in …
Tianyu Liu
,
Jirui Qi
,
Paul He
,
Arianna Bisazza
,
Mrinmaya Sachan
,
Ryan Cotterell
Cite
URL
EurekaRebus - Verbalized Rebus Solving with LLMs: A CALAMITA Challenge
Gabriele Sarti
,
Tommaso Caselli
,
Arianna Bisazza
,
Malvina Nissim
Cite
URL
Non Verbis, Sed Rebus: Large Language Models Are Weak Solvers of Italian Rebuses
Gabriele Sarti
,
Tommaso Caselli
,
Malvina Nissim
,
Arianna Bisazza
Cite
URL
BabyLM Challenge: Exploring the effect of variation sets on language model training efficiency
Akari Haga
,
Akiyo Fukatsu
,
Miyu Oba
,
Arianna Bisazza
,
Yohei Oseki
Cite
URL
Model Internals-based Answer Attribution for Trustworthy Retrieval-Augmented Generation
Ensuring the verifiability of model answers is a fundamental challenge for retrieval-augmented generation (RAG) in the question …
Jirui Qi
,
Gabriele Sarti
,
Raquel Fernández
,
Arianna Bisazza
Cite
DOI
URL
Multi-property Steering of Large Language Models with Dynamic Activation Composition
Daniel Scalena
,
Gabriele Sarti
,
Malvina Nissim
Cite
DOI
URL
NeLLCom-X: A Comprehensive Neural-Agent Framework to Simulate Language Learning and Group Communication
Yuchen Lian
,
Tessa Verhoef
,
Arianna Bisazza
Cite
URL
The SIFo Benchmark: Investigating the Sequential Instruction Following Ability of Large Language Models
Following multiple instructions is a crucial ability for large language models (LLMs). Evaluating this ability comes with significant …
Xinyi Chen
,
Baohao Liao
,
Jirui Qi
,
Panagiotis Eustratiadis
,
Christof Monz
,
Arianna Bisazza
,
Maarten De Rijke
Cite
DOI
URL
Democratizing Advanced Attribution Analyses of Generative Language Models with the Inseq Toolkit
Gabriele Sarti
,
Nils Feldhus
,
Jirui Qi
,
Malvina Nissim
,
Arianna Bisazza
PDF
Cite
»
Cite
×